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1. Introduction

In the theory and practice of the finite elements a considerable effort has been made
to design special approaches to deal with problems on domains with corners (especially,
cracks) and with problems on infinite domains.

In the case of nonsmooth boundaries the following approaches are the most typical:

(1A) Mesh Refinement([4],[6],[7],(8],(9],(13],[14],[25]).
(1B) Use of Special Elements([1],(2],[22],[26)).
(1C) Use of the Enriched (nonlocal) Bases Functions([16],{23]).

In the case of the infinite domains, the widely used approaches are:

(2A) Domain Restriction Procedure({15],{17]).

(2B) The Boundary Element Method and Combination of the Finite Element Method and
the Boundary Element Method([18],[21)).

(2C) Infinite Element Approach({28],(29]).

The method (1C) is in practice almost never used because this approach destroys the
architecture of the finite element method program. The method (1B) is to devise special
finite elements in which the approximation mimics the singularity in elements neighboring
singular points. By this the accuracy is increased, nevertheless the rate of convergence of
the h-version is not impfoved. By far the most effective approach for handling singularities
is the method (1A) but the success of it depends on the proper mesh refinement.

The method (2C) is not often used in practice. The Boundary Element Method haundles
well the problexi} with constant coefficients on domains with bounded boundary, but this
method has difficulties when the coefficients of the equation are not constant, the boundary
is unbounded, and is ineffective when the differential equation is not homogeneous. The
hybrid method between the Finite Element Method and the Boundary Element Method

is sometimes used but lies in the h-version and it has the same character and difficulty
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as (1B). The most widely used method in practice for dealing with infinite domain is
the method (2.4). However the main concern in this approach is to choose the truncating
domain properly to get a desired accuracy.

There are threé versions of the finite element method: the h- version, the p-version, and
the h-p version. The h-version is the standard one, where the degree p of the elements is
fixed, usually on low level, typically p = 1,2,3 and the accuracy is achieved by properly
refining the mesh. The p-version, in contrast, fixes the mesh and achieved the accuracy
by increasing the degrees p of the elements uniformly or selectively. The h-p version is
the combination of both. In this paper, we are mainly concerned with the p-version of
the finite element method([8],[10]). We will see that the p-version in many cases avoids
naturally some difficulties arising in the h-version because it uses elements of large size.

The basic aspects of the finite element approach are

(a) The geometry, where the domain is defined and partitioned into elements.

(b) Creation of elemental stiffness matrices and elemental load vectors.

(c) Assembling elemental stiffness matrices and load vectors together to form the global
stiffness matrix A and the global load vector b

(d) Solving the system Az =b

(e) Post processing.

The elemental stiffness matrices are based on the (elemental) mapping of the element
onto the standard element and the polynomial shape functions on the standard element.
The usual (elemental) mapping is typically of isoparametric or blending type.

In this paper, addressing two dimensional problems, we will show that the effective
use of other ma‘pping (for example conformal mapping or quasi conformal mapping) in
conjunction with the usual (elemental) mapping in the frame of the p-version of the finite
element .a.thod yields an exponential rate of convergence at virtually no extra cost. This
approach can be directly and practically, without any changes, implemented in the p-

version of the Finite Element Code PROBE([24]).
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The outline of this paper is as follows: In section 2 the generalized elements are intro-
duced and the conditions for elemental mappings to yield conforming elements are stated.
Also listed are some preliminary lemmas. In section 3 we prove that the p-version of the
finite clement method leads to an exponential rate of convergence when the exact solution
of the problem is analytic. In section 4 the method of auxiliary mappings is introduced. It
is shown that one can obtain an exponential rate of convergence at no extra cost when this
technique 1s applied to Laplace equations on domains with corners. In section 5 we show
that the mapping technique also works for general elliptic boundary value problems. In
section 6 this technique is applied to the problems on the exterior of the bounded domains.

Finally, the conclusions are summarized in section 7.

2. Preliminaries

Throughout this paper, {2 denotes a simply connected (bounded or unbounded) open
subset of R? , where R? denotes the usual Euclidean space with z = (z;,z2) € R? . As
we mentioned above, the domain 2 under consideration is partitioned into the elements
e;,t = 1,2,..n. By an element e we mean an open curvilinear triangle or rectangle. A
curvilinear triangle is a domain which is bounded by three smooth(analytic) arcs(sides)
whose ends are called the vertices. A curvilinear rectangle has analogous meaning. We
allow the triangle to be unbounded, where one vertex is located at oo analogously as in
the theory of complex variable. Then Q = U,&; , where by the bar we mean the closure in
R? . As usual, we will assume that e; Ne ; is either empty or is a common vertex or is an
entire common side.

By T and @ we denote the standard triangular element and the standard quadrilateral
element respectively as shown in Fig.2.1(a)(b). The coordinates in the standard plane are

denoted by € = (£;,£;). As usual we define on the element e the finite element space S(e)
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which is the span of elemental shape functions, denoted by N7(z),z € e, i.e. S(e) =
span; N{(z).

By the standard shape function Ni(€) we mean the shape functions on the standard
element E(E = T or E = @) which are divided into the groups of (1) nodal, (2) side
and (3) internal shape functions. We assume as usual that a bijective smooth elemental
mapping ®. from E to e is such that ®.({) =z € ¢, for { € E, where E=T or E = Q
according as e is (curvilinear) triangular element or (curvilinear) quadrilateral element.

Then the elemental shape functions N are related to the standard shape function by
Ng(z) = Ni(®71(z))( equivalently by N£(®.(£)) = Ni(£)). Alternatively we denote it by
NE =N;08;(or N; = Nf o ®,). We associated to every element e, of the partition of
the mapping ®.,. We will assume that these mappings satisfy the usual conditions used in

the finite element method that lead to conforming finite elements. This means that if A is

a common vertex of the element e;; ,j = 1,2,..m and N:;’ are the nodal shape functions

associated to the vertex A then the function v such that

v(z) = N:jh’(a:) one,j=1,2,..,m
v(z) =0 forz ¢ ex;,j =1,2,..m

is a continuous function on € . Similarly if 4 is the common side of elements e, and e,
and
ek

N j=12

i
are the side shape functions associated to the common side then the function v defined by
v(z) = N'-C’,.’(:c) onei;,j =1,2
v(z) =0 for z ¢ ex;,j = 1,2.

is a continuous function on 2 . Finally the supports of the internal shape functions are ir

the element.




Therc are many possible elemcntal mappings. We will impose some restriction on the
elemental mappings. Especially we will assume that ®, has the circular arc property: Let
e be a curvilinear triangle with a circular side as shown in Fig. 2.2, then ¢, linearly
transforms the length of arc of the standard triangle on the length of arc of the element
e. If e 1s a curvilinear quadrilateral element with a circular side, the meaning of ¢,
with circular property is analogous. Let us note that the code PROBE([24]) is using the
elemental mappings with circular arc property.

In general we will consider two domains Q and € in R? such that ¥(Q2) = Q where ¥ is
a smooth bijective mapping of Q onto Q . If u is a funtion defined on Q2 then @ will denote

the function defined on Q by
d=uo¥ Noru=1do0V¥)

Obviously if @ = €,Q = T( or Q) then ¥ = ®_! as a special case of notation we have used
above. When there is a mapping ¢ which transforms a curvilinear triangular (quadrilateral)
element € onto an element e* of the same type, we will construct the elemental mapping
®.. of the standard element E(E =T or Q) onto e* so that

Niod =N = (Nf)op™!

=N;0® ' op~! for any shape function A on E.

Note that if ¢ ™! is a mapping, from an element e* with a circular side onto another element
e with a circular side, which is linear in the arc-length, and if ®.. has ciccular arc property

then the composite mapping ¢~}

o ®.. also has the circular arc property. We have seen
that the main objective is to create the set S(e) of elemental shape functions which led
to the conformir;g base functions. We can now use not only one elemental mapping but a
family of such mappings. For example, let >~! maps é*, an element with circular side,onto

¢ . an element with circular side, then we can enrich the space of elemental shape functions

for e by functions N; o ®7.! 0, where V; denotes the standard shape functions which are
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zero on the side of the standard element that is not associated to the circular side. So
far we mentioned only the objective to construct the elemental shape functions. The next
objective is to construct them so that local stiffness matrices can be easily computed.
Returning now to the general mapping ¥ of i onto Q) , we denote the Jacobian of ™!
by J(¥~!) and its determinant by |J(¥~!)| and we will assume it is positive on Q. Then
we define
M= (|JJ(THNYAHI(F) 0 ¥

and we get an obvious lemma.

Lemma 2.1. Suppose A = [a,j],a;; € Loo(R2),1 <1,) £2andifQ = ;’tI{a,»]o\IJ’I}JLIT =

{q,-j}, then we get

2 [[Towm - [] Swos s

and qui(€) € Loo().

We are particularly interested in the special case when A = I the identity matrix and ¥

is a conformal mapping of Q onto Q) . Then we have

Corollary 2.1. If ¥ is a conformal mapping and A = I then Q = I, that is,

// Vu-VvdI:// Vi - VodE.
2 Q

Corollary 2.2. Let A= {aij(z)} be a symmetric 2 x 2 matrix such that

laij(z)] < m < oo, Za.,(r)n.n, > y2(n} +13),712 > 0,

8




for all (ny,12) € R? and if ¥ is a conformal mapping, then we have

gri(§) < vy < oo, Z ax(&)mem 2 v3(n} +n3), %5 >0,

for any (n1,n2) € R? , where v} and 3 depend on the mapping but not on £ . Hence the

conformal mapping preserves the eilipticity of the operator
0 0
L= E —(aij(z)=—).
6.13,‘ (a J(I)ax,- )

Let us note that Corollary 2.2 is also true under a weaker condition on ¥ , for example,

when

J(2)J(U)T = |J(¥)|diag(di(z), da(z))

and

0 < ky < di(z) < kg, for all z € 0.

Finally we would like to mention a conformal mapping which will play an important role

in forthcomming sections:

z=£&% 2=z +129,(z1,22) € e resp Q)

£=6 46, (61,6) € e*(resp Q)

and this mapping characterized by the constant a will be denoted by ¢® ( resp ¥<) re-

spectively.




3. The p-Version of the Finite Element Method
Let Q C R? be a bounded domain whose boundary T is composed of smooth (analytic)
arcs [';,1e. T = U,F,.

Consider now the following model problem

(3.1a) —Au=f inQ,
(3.1b) u=0 onlp=Ugepli
(3.1c) Ou on I'y = UienT,

on =Y

where DNN = ¢, Ty UTlp =T, and g € Ly(I'y). For simplicity we assume that I'p # ¢
(otherwise the solution would not be unique and we would have to use the standard

approach which would avoid this technical difficulty).
Let H'(Q) be the usual Sobolev space and H} = {u € H}(Q):u=00nTp} then as

usual we will consider the weak solution of the problem: Find uo € HL(f2) such that

B(ug,v) = F(v), for all v € HL()

where

B(u,v) = // Vu - Vudz,
Q

F(v)=//0fvd1:+/r~ guds.

Furthermore we denote [|ul|% = B(u,u) and will call ||.|z energy norm. Because of the
assumption on I'p we have ||ul|g = ||ul|x1(q)-

Let us now consider a (fixed) partitioning of £ into the elements e;, i.e. Q = Ug as
in the previous sections. Because of the assumption about e, the vertices of Q are the

vertices of some elements. We will assume that the partition and the (elemental) mapping
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®. introduced in the previous section satisfy the (technical) conditions listed in ([4], [14])
that are satisfied in the code PROBE.

Let
Sy, = {u € Hp(Q) : ul. o @, is a polynomial of degree p on E for all eiement e},

where F is T or Q) according as e is a triangular element or a rectangular element, and let
N, be the dimension of S,. Then the p-version of the finite elernent method is now to find
up € §p such that

B(up,v) = F(v),for all v € S,

and then

(3.2) lup ~uolle = ggg’ lw ~ uoll -

We have now

Theore.r.n 3.1. Let ug € HLH(Q) be such that

(3.3) luoll e (n) € CDFKLE =1,2,...

where H*(§2) is the usual Sobolev space and C and D are constants independent of k, then
(3.4) luo — uplle < Ce™ ™M

where ¢ and ¥ > Q are independent of p.

Proof. By modifying the proof given in [4], one can easily proceed the proof of this

theorem. Hence we will only outline the key steps of the proof.

(i) Denoting u, = ul. the restriction of u on the element e, we define 4, = u. 0 $., where

&, is the elemental mapping of the standard element E onto e.

11




(i) We construct i,,, € H'(E) which is a polynomial of degree p on E and approximates
the function i, in H!(FE). Using (3.3) we get
(35) “fte e ﬁc'PHHl(E) S Ce'"””

(ii1) Let @, p = tie,p 0 7!, then 4, , approximates u, on e and satisfies

lue = Ge,pllH1(e) S Cre™7?P

but @, ¢ HL(Q)

(iv) We construct a correction term on every e so that the correction function u, can be

~ member of H}(§2) and satisfy (3.4). (QED)

We also have

Theorem 3.2. Let (¢ be a polygonal domain and ifug € H9(2), ¢ > 1 integer or fractional,

then we have

lluo — uplle < CNy O™V |ug|| ega)

If ug = crPp(8)x(r,8), where (r,8) are the polar coordinates at the vertex A of Q ,p(f) is

a smooth function and x(r,8) is a smooth cut-off function, then

lluo — upllg < CN;P

For the proof, see [8]. (QED)

12




Example 3.1 Let  be an L-shaped domain partitioned into 12 elements as shown in

Fig. 3.1 and

D ={1,2}

N ={3,4,5,6,7,8}

g=1lonTli:=4,567

g=0onTl,:=3,8
Let us assume f = 0 and Qg, denotes the circular subset of 2 which is composed of the
curved triangular elements in Fig 3.1. Then on 1l=0- 2r, the solution ug satisfies
(3.3), but on Q it only satisfies ug € H3/3~¢(Q), where ¢ is an arbitrary positive number.

Moreover the solution has the leading term r2/3sin(2/3)8 near the re-entrant corner.
g

Hence applying theorem 3.2 we get

lluo — upllE ~2/3
=— - <
50(1’) ”uOHE -—_ CNp

Fig. 4.2 shows ¢g in dependence on N, in log x log scale. It also shows the slope of the

rate Np /3 1f we would solve the problem on €2 then we would get

lluo — upllg < Ce= Ve

that is, the exponential rate. Hence we see that the error decrease algebraically only be-

cause the function from S, are not able to approximate well the solution in Qg,.

13




Fig. 3.1. The Scheme of the L-Shaped Domain Q

and a Subdomain Qg,.
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4. The Method of Auxiliary Mapping for the Laplace Operator.

So far we constructed the spaces S(e) by using the standard elemental mapnings &,
which were based on the blending mapping technique.

Let us now propose the question about optimal mapping technique which is adjusted
according to the character of the solution. To each element e we associate a mapping ¢,

(see Section 2) which maps e onto e* = ¢,(e), and then use the composite mapping
®, = (pe) ™" 0 &

for constructing S(e). We will say that the set of mappings ¢, is admissible if the mappings
{(¢pe)”! o ®.-} will lead to conforming elements (see Section 2). Now the problem is
following: Describe the families of admissible mappings and select one family that leads
to optimal (in some sense) results.

Let us show such a family on the mesh shown in example 3.1. Let us map the element
ej,j = T,.,12 (see Fig. 4.1) onto the element e} by the conformal map (¢®)~!, where
@ : €% = z. The mappings {(ap?’ ~1:j=71,..,12} stemming from the conformal mapping
(¢*)™1, a > 3/2 and the identity mappings ¢, = 1,2,..6, lead to the conforming elements.
In fact (because Ry = 1) the curvilinear triangles e;,7 = 7,...,12 are mapped by the
mapping (cpf’)‘l onto the curvilinear triangle e and the mapping is linear on the circular
arc. This together with the fact that ®.. has the circular arc property shows that elements
constructed by ¢® o ®.. are conforming. Using Corollary 2.1, we see that in our example
the elemental stiffness matrices of e, j = 7, ..., 12 obtained by using the elemental mapping
¢, =p%o0 ‘Pc; is identical with the elemental stiffness matrix of the element e; obtained
by using the element mapping ‘I’,;. These stiffness matrices are directly computable, for
example, by the code PROBE. The conformal mapping ¢} then has the obvious form:
let (r,8) be the polar coordinates in the z-plane and (p,%) the polar coordinates in the

é-plane , then we have

r=p"and § = ya; p=r"/"and ¢ = 8/«

15




and if e ={(r,0)[0 < r < Ry,B0 < 0 < ﬂl} then e* ={(p,¥)|0 < r < Ré/a, Bo/a < ¥ <
B1/a}. Hence we compute the elemental stiffness matrix for e in e* instead of in e, that
is, in the £-plane.

Assume now that f = 0 in (3.1) then the exact solution ug can be written in the form

of a series

0
(4.1) ug(r,0) = Y_ axr'*/*¥sin(2/3)k6 on Qg,

k=1
The series converges absolutely on g,. Now using the conformal mapping ¢® : z = £
we have 4y = ug 0 p“ and
[o ]

(4.2) to(p, ) = Y axp®¥**sin(2/3)pka on Qf,.
k=1

Hence if a = (3/2)m,m an integer, 4o is an analytic function. Using now this mapping in

* instead of the function

the finite element method we approximate the function ig on €]

ug on e;. Denoting the finite element solution which is based on the elemental mapping

@% 0 .. by ug, we get

Theorem 4.1. Let us consider the problem given in example 3.1 with f = 0. Suppose

a = (3/2)m , m is an integer. Then we get
lug — uolle < Ce=VNs

where C and v are independent of p (and hence N,)

Proof.

Hu: - U0||H1(e,-) < C”u; - ﬁO”H‘(e;)

and apply theorem 3.1 with minor modification. (QED)

16




Tables 4.1 shows the relative errors for m = 2/3,1.2 and 4. Note that m = 2/3 means
the case when no mapping technique was used. Figs. 4.2 and 4.3 show the error ¢ in
logs x log.V scale and Fig. 4.4(a) shows the error in logs x V.V scale.

We see the large improvement by this approach. The values a = m(3/2) is obviously

the most advantageous in this case. Nevertheless for general @ > 1,a # m(3/2) we get an

asymptotic improvement. By applying Theorem 3.2, we get

€
€10 11

€9

€8

Figure 4.1.The Scheme of Qg, and Q% .
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TABLE 4.1. The Relative Error for a = m(g),m =2/3,1,2,4

when f =0.

e 1 1 @) DOF
1 0.1628469724675572D + 00 | 0.1176835578896779D + 00 | 10
2 0.6774829063879436D — 01 |0.2709809653006089D — 01 | 32
3 0.4267764860979481D — 01 |0.1392839460138052D — 01 | 60
4 0.2930203635221640D — 01 |0.4078061954970974D — 02 | 100
5 0.2236678198833828D — 01 [0.1137579818794599D — 02 | 152
6 0.1794231933116408D — 01 |0.3390584498845191D — 03 | 216
7 0.1486700458517911D — 01 |0.9705280386932562D — 04 | 292
8 0.1261468544746016D — 01 |0.2757048098:66325D — 04 | 380

g > (52'3) s (g) DOF
1 0.2437842370603280D + 01 |0.3913546088255135D +0C | 10
2 0.2757060901917393D — 01 |0.1304970484223534D +00 | 32
3 0.1408437528088371D — 01 (0.2328733675022739D — 01 | 60
4 0.4142402706997820D — 02 | 0.4295634650207781D — 02 | 100
5 0.1149455073984022D — 02 |0.1237407887180692D — 02 | 152
6 0.3425494364421739D — 03 |0.4100441132194179D — 03 | 216
7 0.9736221988286052D — 04 }0.1428178128929969D — 03 | 292
8 0.2746260993089290D — 04 | 0.4942584844978042D — 04 | 380 |

Theorem 4.2.

(4.4)

o

lup —wolle < —7755a
P 1v}()2/3)0

where C is independent of N, .

In theorem 4.1 and 4.2 the constant C' depends on a. We have seen it in Table 4.1 and
Fig. 4.2, where the error when m = 4 was higher than that when m = 1.

To see more in details these effects, let us investigate the error of an approximation of

(z+1)%,z € I =(-1,1) by polynomials in L,(])- norm.
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From part 1 of [12], we have

Theorem 4.3.

a+1/2
(4.5) 5p=00(0)m(1+0(1/13)) asp — o
where

_I(1 4+ a)?fsinral

o) = =t

The value a = 1/6 gives the rate ¢, = O(p~*/®) which is the same (in p) as in our
example when no mapping is used. In the table 4.2 we give values of ¢, for some values of
a and p when the term (1 + O(1/p)) is neglected. We also give the values of the norm of
(z + 1)* in L,(I) which is of course an upper bound of the error. We selected the value of
a so that |sin ar| has same value in the formula (4.5). We can see the typical behavior,
that we have observed in Table 4.1, namely that for higher a the results are worse for
low p (and low accuracy) while they are better for higher degree of polynomial(and higher
accuracy). Hence in general the choice of a depends on the required accuracy.

In the above analysis, we have considered the mesh shown in Fig. 3.1. We can of course
use the meshes with concentric layers which are used in the h-p version too (see Fig. 4.5)
and use the mapping as before. By this we can combine mesh refinement approach and
the auxiliary mapping technique.

So far we have assumed that f = 0 and hence the solution in a neighborhood of the
corner can be expressed by the series (4.1). On the other hand, if f #0, f € H*(2) then

(4.1) is no longer true and the solution uq in Qg, can now be written in the form(see,[19])

n 2 n/3
=)k
(4.6) uo(r,8) = akr 3 sin(2/3)k8 + 3 byr?¥ log r sin 2k6 + v(r, 0),
k=0 k=1

where v € H*t?(Qp, ), provided that (2/3)(n + 1) > s + 1.
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Let us consider f = 1, then first term in the expansion of v is r? log 7 sin 2k and hence
in contrast to the previous case we can not achieve (in general) an exponential rate of
convergence even when f is analytic, but we can only have the rate N2> log NV, ([8],9)).
In general we expect that the positive effect by the auxiliary mapping technique will be
slightly smaller for f # 0 than for f = 0. Table 4.3 shows the errors for the mapping
when a = m(3), m = 2/3,1,2, and 4, and m = 2/3 stands for the case when no mapping
technique was used . Fig. 4.6, 4.4(b) show the behavior of the error in the loge x log N
scale and logs x VN respectively. We actually see the differences as predicted. We see
that the auxiliary mapping technique improves the accuracy very much when the degree
of polynomial is > 4.

So far we have used only one mapping. We can of course enrich the space S(e) of
elemental shape functions by functions stemming from identity mapping, i.e. by the usual
shape functions. We can also add analogous shape functions using the conformal mapping
¢ = 2P log z. By such an enrichment we can once more achieve that the rate of convergence
is exponential provided that f is analytic in Q. Of course the complexity in computation
now is higher and practical questions arise. However in contrast to the classical enrichment
approach one advantage of this is that it does not violate the finite element architecture(in
the implementation we add only internal shape functions of special type constructed by
the mapping procedure).

As we mentioned above selecting the partici.'ar a properly and using higher degree
of polynomials yields high accuracy. Let us also state that we can use high degree of
polynomial only in the elements with vertex at the corners (in our example, elements 7-12)
while keeping a iow degree of polynomials in all other elements. A combination with mesh
refinement procedure is also a valuable alternative especially because of the easiness of

computing the local stiffness matrices.




TABLE 4.2. The error ¢, and the L;-norm |ju}l of u=(1+z)* on I

fora =(n+1/6) and (n+5/6),n =0,1,2,3,4.

——

T T 5 7 TT I3
P | " § 5 § 3 &
1 |7.4731D — 2 |3.4188D — 2 |3.2166D — 2 |4.3432D — 2 | 5.0688D — 2
2 |4.3522D — 2 |1.1596D — 2 |8.3258D — 3 |6.5471D — 3 | 6.8665D — 3
3 |2.9657D — 2 |5.3843D — 3 [3.1913D — 3 |1.7100D — 3 | 1.4805D — 3
4 [2.2025D -2 {2.9696D — 3 |1.5168D — 3 |6.0361D — 4 |4.5034D — 4
5 |1.7272D — 2 {1.8262D — 3 |8.2602D — 4 |2.5778D — 4 |1.7031D — 4
6 |1.4063D —2 |1.2107D — 3 [4.9412D — 4 |1.2555D — 4 |7.4850D — 5
7 11.1769D — 2 [8.4798D — 4 |3.1661D — 4 |6.7328D — 5 | 3.6720D — 5
8 [1.0059D — 2 |6.1941D — 4 |2.1381D — 4 |3.8859D — 5 |1.9592D — 5
9 |8.7406D — 3 |4.6769D — 4 |1.5049D — 4 |2.3766D — 5 [1.1170D — 5
10 |7.6975D — 3 |3.6272D —4 |1.0953D — 4 |1.5233D — 5 |6.7187D — 6
11 |6.8543D — 3 [2.8761D —4 |8.1951D — 5 |1.0149D — 5 |4.2242D ~ 6
12 |6.1605D — 3 |2.3233D — 4 |6.2760D — 5 |6.9858D — 6 |2.7565D — 6
13 |5.5809D — 3 |1.9067D — 4 |4.9023D — 5 |4.9433D — 6 |1.8565D — 6
14 {5.0904D — 3 [1.5863D — 4 |3.8951D — 5 |3.5825D — 6 |1.2850D — 6
15 |4.6707D — 3 [1.3355D — 4 |3.1412D — 5 | 2.6509D — 6 |9.1077D — 7
Jull |1.3747D + 0 | 1.5431D + 0 |3.0238D + 0 | 2.3329D + 0 | 2.7495D + 0
«a I7 19 23 29 29
P~ 6 i 6 6 6
1 [1.4586D —1 |2.5522D — 1 |9.3989D — 1 |1.9638D + 0 | 9.8958D + 0
2 |9.7720D - 3 |1.3049D — 2 | 2.7987D — 2 |4.4624D — 2 |1.3096D — 1
3 |1.4357D — 3 |1.5826D — 3 |2.3129D — 3 |3.0442D — 3 |6.0879D — 3
4 13.2433D -4 |3.0810D — 4 |3.3440D — 4 |3.7930D — 4 |5.6332D — 4
5 |9.6187D —5 |8.0914D —5 |6.8870D — 5 |6.9177D — 5 |8.0567D — 5
6 |3.4420D —5 (2.6126D—5 [1.8105D —5 |1.6411D — 5 |1.5562D — 5
7 |1.4132D—5 [9.8131D -6 |5.6915D — 6 |4.7192D — 6 |3.7452D — 6
8 |6.4443D — 6 |4.1370D — 6 |2.0507D — 6 |1.5720D — 6 | 1.0662D — 6
9 ]3.1925D -6 |1.9104D — 6 |8.2288D — 7 |5.8800D — 7 |3.4655D — 7
10 |1.6911D — 6 |9.4970D — 7 |3.6025D — 7 |2.4157D — 7 |1.2539D — 7
11 |9.4678D —7 |5.0173D — 7 |1.6947D — 7 |1.0724D — 7 | 4.9565D — 8
12 |5.5527D — 7 |2.7896D — 7 |8.4689D — 8 |5.0804D — 8 |2.1105D — 8
13 [3.3880D — 7 [1.6200D — 7 |4.4555D — 8 |2.5440D — 8 [9.5736D — 9
14 |2.1389D — 7 |9.7678D — 8 |2.4503D — 8 |1.3361D — 8 |4.4863D — 9
15 |1.3910D —7 |6.0849D — 8 |1.4005D — 8 |7.3156D — 9 | 2.3041D — 9
Tull |3.9037D + 0 | 4.6895D + 0 | 6.8476D + 0 |8.3136D + 0 | 1.2344D + 1




TABLE 4.3. The Relative Errors in Energy Norm for a = m(3/2),m =2/3,1,2,4

when f = 1.

p 1 1 (%) DOF
1 0.6020654757148309D + 00 | 0.5706890379221034D + 00 | 10
2 10.1308957854381257D + 00 |0.1009916680045339D + 00 | 32
3 10.9925866863851720D — 01 |0.8092169418184365D — 01 | 60
4 |0.4203366119963193D — 01 | 0.6942004795074728D — 02 | 100
5 |0.3198798981482650D — 01 |0.2059652008864891D — 02 | 152
6 [0.2563898916834782D — 01 {0.5410328220679518D — 03 | 216
7 10.2124137148103968D — 01 | 0.1410620291464109D — 03 | 292
8 |0.1802105654621925D — 01 |0.3647987063804444D — 04 | 380

p ° 2 <g> 4 (g) DOF
1 0.6140576157783938D + 00 |0.7227916745356786D + 00 | 10
2 ]0.1153904981172256D + 00 | 0.1685768303941887D + 00 | 32
3 10.8432233140432240D — 01 [0.9410470781118301D — 01 | 60
4 (0.8046799392682128D — 02 |0.2885998162978118D — 01 | 100
5 10.2159258500150655D — 02 |0.1095935137932326D — 01 | 152
6 |0.5484874342364825D — 03 |0.3570789379357526D ~ 02 | 216
7 |0.1413509051434937D — 03 |0.1052197244808133D — 02 | 292

L 8 10.3612904449632896D — 04 |0.3077579620346113D — 03 | 380

Finally let us remark that if f # 0 then the computation of the elemental load vector is
influenced by the auxiliary mapping. For example, if the conformal mapping ¢® : {* = =

was used as in example 3.1 then

F=10(e")f = a?p* @V (fop®)
has to be used for the elemental load vectors on the elements in 2%, .

In this section we are concerned only with the corner singularities, but our idea can be
extended to deal with some other types of singularity as well. For example, the boundary

singularity, known as the problem of Motz in the literatures(see [20], [25], [27]), can also
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be treated very efficiently by using an argument similar to that given in this section. It

will be elaborated elsewhere.

Figure 4.5. The Refined Mesh on the L-Shaped Domain Q for the h-p Version.
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5. The Method of Auxiliary Mapping for the General Elliptic Differential
Equation of Second Order.

In the previous sections, we have applied the auxiliary mapping technique to the Laplace
operator. In this section we will show that this technique can also be used for general elliptic
boundary value problems. In the case of Laplace operator, Corollary 2.1 guarantees the
simpleness of computing the elemental stiffness matrices. However in the case of general
elliptic operator we need to use lemma 2.1 for computing elemental stiffness matrices and
hence the routines for differential equations with nonconstant coefficients should be used
for the computation in general. Even if the given problem has constant coefficients, the
coeflicients we are concerned in the auxiliary mapping technique are polynomials in sin z
and cos z. This fact has to be taken in account because quadrature formula are used in the
computation of the stiffness matrices. Nevertheless they lead to uniformly elliptic operator.
Hence for f = 0 one can achieve once again the exponential rate of convergence as before.
Similar situation. also occurs for f # 0.

We now describe the mapping technique for the general case with the mesh shown in
Fig. 3.1. This goes as follows:

(Step a) Select parameter o for the mapping ¢
(Step b) Map elements e7,...,e12 onto e},...,e}; by the mapping (¢*)~! and construct the
coefficients of the transformed elliptic operator and bilinear form: Since (¢*)~!(z) =

2!/ we have

cos(l —a)y —sin(l—a)y
sin(l — a)y  cos(l —a)p

and by lemma 2.1 the coefficient ¢;; of the transformed elliptic operator can be com-

puted by the following formula

t=(1-a)y
g11 = @y cos?t + apy sin’t - (@q1 + @y2)sintcost
(51) qi12 = (&u - agz)sin tcost — [121 sin2 t+ &12 COSzt

g = (&11 — @zz)sintcost — @y sin? ¢ + aq cos?t
g2 = an sin?t + G cos?t + (@12 + @21)sintcost
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where a,; = ai;j 0 9* and (p,¥) is the polar coordiates in the £-plane.

(Step c¢) Taking care of numerical integration, compute the elemental stiffness matrix on e;
with the coefficients ¢,;(£) and the elemental load vector on e} with the right hand
side f = (a?p*e=b)). (f(P,w))

(Step d) Determine the finite element solution ugg by solving the assembled global system.

The solution at a point z € e; can be obtained by evaluating the solution on e; at

& = (v*) 7 (2).

It is worth to note the following observation about the case when the coefficient a;;
are constants: suppose A) and A; are the eigenvalues of the symmetric matrix A = [a,;]
then there is an orthogonal matrix P such that PAPT = diag (A1, A2). If ¥ denotes the

mapping defined by

1 1
v L,Y) =\—=—T,—F=Y
(=) (\/-Xl vz )
then ¥ maps the elliptic subdomain

2

2 y?
K={(J:,y):/\—l-+/\—2$1}ﬂQ

onto the circular subdomain Qg, = {z : |z] < 1} N N. Let us denote P~!}(K) and

(¢*)"Y(R,) by K and Q%, respectively. That is,
)7 e

K — K — QRo 4 Ro*

Then by an argument similar to that of lemma 2.1 we have

(5.2) / /R(Vu)-A-(Vv)de =vA A / /Q | Vi Vode
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In particular, if aj; = a;; = 0, we have

ou 0
(5.3) // ay 22 X 22—3“ _-)dx_m/ Vi - Vide
8116 Ty Oz Q;*o

and the computation of elemental stiffness matrix and load vector on e* in % is as simple
as the case of Laplace operator. We can also use here the triangular elements with elliptic
arcs which are allowed in PROBE. The mapping Technique together with this observation
is leading to another approach to deal with interface singularities. Detailed argument of
this will be presented elsewhere.

In similar way, we can treat the plane elasticity problem. For example, in the case of
crack where the sides are not loaded the solution has a simple form and the auxiliary
mapping technique with the conformal mapping z = £ will lead to the rate N;* of
convergence analogously as before. Unfortunately in contrast to the case of the Laplace
operator the local stiffness matrices has to be computed via nonconstant coefficients of the

form similar to (5.1).

6. Elliptic Problems on Unbounded Domains.

In a similar manner to the previous sections the method of auxiliary mappings can deal
the problems on unbounded domains. Let us address this with a model problem on an
unbounded domain Q with bounded boundary I" (this is , Q is the outside of a bounded

domain enclosed by a simple closed curve T').

(6.1a) -Au=f inQ,

(61b) u=0 on FD)
g

(6.1c) 8: =g only,
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where I'p and 'y are unions of analytic arcs as section 3 and T’ is a simple closed curve.
For simplicity we will assume that I'p # 0 and the orgin is inside of T.

Let ¥ be the conformal mapping £ = 2, and let

WHQ,¥) = {ue L(Q): (//u2|.f(<1>)|+//vu.w) < oo},

WhHQ) = {ue WH{Q,¥):u=00nTp}

//ﬂ |f|2l—ﬂl‘ﬁ < 0,

then there exists a unigue u € WA() such that

// Vu - Vvdz = // frdz +/ gvds, for all v € W}(Q)
Q Q I'n

Suppose the mesh on  is as shown in Fig. 6.1. Then by the conformal mapping ¥

Suppose

the infinite elements e3° will be mapped to the curvilinear trangular elements ej. Now
we can proceed as before. For example, suppose f = 0 and on I' = G2 we prescribed
the same boundary conditions as section 3 and the mesh on 2 is as shown in Fig. 6.1.
Then combining the auxiliary mapping technigue in the neighborhood of every vertex and

the auxiliary mapping ¥ for the infinite elements we can achieve an exponential rate of

convergence as before, i.e.

o — upllwi(a,u) < Ce VI

Let us show one numerical example.

Example 6.1. Let us consider Laplace’s equation on Q = {z : |z| > 1/2}. Suppose
Qr, = {z 2] £ 1} , the mesh is as shown in Fig. 6.2. and we impose the nonhomoge-

neous Dirichret boundary condition on I' by the true solution u(z,y) = z/(z? +y?). Then
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the relative error in energy norm is as shown in Table 6.1 and we can see once again the

exponential rate of convergence in Fig. 6.3.

Table 6.1. The Total Strain Energy and The Relative Error

for Laplace’s Equation on the Unbounded Domain.

Total Energy Relative Error in Energy Norm | DOF
11.16236197243942 | 0.3342565747335926D + 00 9
12.43592792490380 | 0.1018837543895582D + 00 29
12.56842346856016 | 0.1278127328426342D - 01 53
12.56658836901951 0.4162735313104689D — 02 89
12.56637844630835 | 0.7894597600800805D — 03 137
12.56637082991567 | 0.1309711457162764D — 03 189
12.56637061959958 | 0.2042102697231802D — 04 269
12.56637061447803 | 0.3075441953279617D — 05 353

00 3 O OV W N T

Similar approach can also be applied for the conformal mapping £ = 1/(2%) and also for
the general differential equation and elasticity problems. It is essential that the solution
has finite energy and that we consider the behaviour of the solution at oco. So far we
mentioned only the ca.ée when the boundary is bounded only. By the same approach we
can deal with infinite domains such as half plare etc. We memtion that the implemention
of the infinite elements is exactly s simple as for ther finite elements we disscused in
previous sections. Many times we are dealing with the case that the solution does not
belong to the space H!() because of the behavour at co. Typical case is when on the

bounadry I' we prescribed the following singular boundary condition:

du
5;1—9’ /I:gdsaéO and f =0.
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Then the solution at oo is of form u = Clogr and we have to enrich the space of elemen-
tal shape functions by this function analoguously as we disscussed earlier. Of course we
have to adjust the approach to the fact that we deal with one shape function with infinite

energy. This can be dealt in different manner.

7. Conclusion

The h-p version allows a very effective and simple treatment of the singularities of
the solution caused by the corners of domains and by the unboundedness of domains in
R?. This approach can be combined with elemental enrichment procedure and the mesh
refinement procedure.

By using this approach one can obtain a higher rate of convergence in almost all appli-
cations. From the view-point of implementation, the easiest and the cheapest approach
is the auxiliary mapping technique with possibly nonunifom polynomial degrees over

the elements.

33




R,

%

Fig 6.1. Mesh on the Exterior of an L-Shaped Domain for the Auxiliary

Mapping Technique.
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institure for Physical
Science and Technology. it has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, ete.)

Further information may be obtained from Professor I. Babuska, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.




